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Abstract— Linear regression (LR) and some of its variants
have been widely used for classification problems. Most of these
methods assume that during the learning phase, the training
samples can be exactly transformed into a strict binary label
matrix, which has too little freedom to fit the labels adequately.
To address this problem, in this paper, we propose a novel
regularized label relaxation LR method, which has the following
notable characteristics. First, the proposed method relaxes the
strict binary label matrix into a slack variable matrix by
introducing a nonnegative label relaxation matrix into LR, which
provides more freedom to fit the labels and simultaneously
enlarges the margins between different classes as much as
possible. Second, the proposed method constructs the class
compactness graph based on manifold learning and uses it as the
regularization item to avoid the problem of overfitting. The class
compactness graph is used to ensure that the samples sharing the
same labels can be kept close after they are transformed. Two dif-
ferent algorithms, which are, respectively, based on �2-norm and
�2,1-norm loss functions are devised. These two algorithms have
compact closed-form solutions in each iteration so that they are
easily implemented. Extensive experiments show that these two
algorithms outperform the state-of-the-art algorithms in terms
of the classification accuracy and running time.

Index Terms— Class compactness graph, computer vision, label
relaxation, linear regression (LR), manifold learning.

I. INTRODUCTION

LEAST squares regression (LSR) is a widely used regres-
sion technique in the fields of computer vision and pat-

tern recognition. LSR is usually mathematically tractable and
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computationally efficient. Many variants, such as weight
LSR [1], partial LSR [2], and nonnegative least squares
(NNLS) [3], have been proposed for classification. LSR has
also been used for feature selection and semisupervised learn-
ing. For example, Xiang et al. [4] proposed a discriminant
LSR (DLSR) framework for multiclass classification and
feature selection. The core idea is to enlarge the distance
between different classes by using the ε-draggings technique.
Nie et al. [5] proposed an adaptive loss minimization for
semisupervised elastic embedding (SEE). The purpose of SEE
is to solve the semisupervised leaning problem by using LSR
and the graph embedding [6]. Belkin et al. [7] proposed
a general framework for semisupervised learning where the
regularized least squares can be regarded as a special case
of the proposed framework. Linear regression (LR) is also
a simple and very effective regression analysis method. For
a collection of n training samples represented as a matrix
X = [x1, . . . , xn]T ⊂ �n×m , the objective function of LR
is as follows:

min
A
‖X A − Y‖2F + λ‖A‖2F (1)

where Y = [y1, . . . , yn]T ⊂ �n×c (c ≥ 2 is the number of
classes) is the corresponding binary label matrix and A ⊂
�m×c is the transformation matrix. Y is defined as follows:
for each training sample xi (i = 1, . . . , n), yi ∈ �c is its label
vector. If xi is from the kth class (k = 1, . . . , c), then only
the kth entry of yi is one and all the other entries are zero.

For classification problem, margins between different
classes are expected to be as large as possible after they are
transformed into their label space. This criterion is also used
for distance learning [8] and discriminant analysis [9], [10].
In order to enlarge the margins between different classes,
Leski [11] proposed an LSR model via the squares approxi-
mations of the misclassification errors [4]. Most of the above
methods assume that the training samples should be exactly
transformed into a linear model or a strict binary label matrix,
such as Y in (1). In practice, however, as shown in some
literature, this assumption is too rigid to learn a discriminative
transformation matrix. To this end, some methods are proposed
to solve this problem. For example, the essential of using the
ε-draggings technique in [4] is to relax this rigid assumption.
In [5], the elastic embedding constraint is used to capture the
manifold structure and simultaneously relaxes the constraint
that the predicted label matrix should be exactly equal to
a linear model. Despite their great success based on the
this relaxation, these methods have to encounter the problem
of being easy to excessively fit the labels (overfitting). For
example, in order to pursue large margin, the characteristics
of some training samples may be ignored in the process
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Fig. 1. Visualization of an overfitting classifier and a better classifier (the
red dotted line denotes the Classifier). (a) Training data and an overfitting
Classifier 1©. (b) Training data and a better classifier 2©. Classifier 2© is
obtained by rotating classifier 1© with angle θ .

of training. As shown in Fig. 1(a), since the noises (faces
with sunglass and scarf occlusion) greatly deviate from the
normal samples, classifier 1© overly fits these noises in order
to classify class 1 and class 2 as soon as possible.

The above observation motivates us to develop a method
which not only relaxes the above rigid assumption, but also
solves the problem of overfitting. A feasible solution to avoid
overfitting is to ensure that the samples sharing the same labels
can be kept close together after they are transformed. Since
manifold learning can capture some underlying data structures
by using the graph embedding, we consider using the graph
embedding to address the problem of overfitting. A brief
review of some representative manifold learning methods is
as follows.

Manifold learning methods aim to find a new space in which
the transformed samples well preserve the intrinsic geometry
structure of the samples [12]. For example, locality preserving
projection [13], neighborhood preserving embedding [14],
and isometric projection [15]. However, these methods do
not exploit label information to improve the discriminant
ability of algorithms. Therefore, Yan et al. [16] proposed
the margin Fisher analysis method to simultaneously preserve
both the intrinsic geometry structure and the discriminant
structure of the samples by using the label information. Some
similar methods, such as locality Fisher discriminant analy-
sis [10], [17], locality sensitive discriminant analysis [18],
and local discriminant embedding [19], are also proposed.
In some semisupervised learning methods, the adjacency graph

is usually used to capture the manifold structure for label
propagation [5], [7]. The underlying idea of introducing the
adjacency graph is to ensure that similar samples have nearly
the same labels.

The adjacency graph only captures the local structure of the
samples. In order to ensure that the samples from the same
class can be kept close together in the transformed space,
the distribution of samples from the same class should be
captured by using the sample affinity. To this end, the concept
of the class compactness graph is introduced by using the label
information. In the class compactness graph, two different
samples from the same class are linked by an undirected edge.
By using the class compactness graph, the samples from the
same class can be kept close together in the transformed space
so that the problem of overfitting can be avoided to a great
extent. As shown in Fig. 1(b), by using the class compactness
graph, the samples, even the samples corrupted by the noise,
sharing the same class labels keep close together when they
are transformed into their label space. A better Classifier 2©
can be obtained in this case.

Inspired by DLSR and the manifold learning methods, in
this paper, a regularized label relaxation (RLR) LR method is
proposed, which not only relaxes the strict binary label matrix
into a slack variable matrix by introducing a nonnegative label
relaxation matrix, but also avoids the problem of overfitting
by constructing the class compactness graph. The advantages
of the proposed method are twofold: 1) it can enlarge the
margins between different classes as much as possible and
2) it has more freedom to fit the labels better. To avoid the
problem of overfitting, the method uses the class compactness
graph to guarantee that the samples from the same class can be
kept close together in the transformed space. In this proposed
method, two different loss functions are used. The first is based
on �2-norm loss function and we refer to it as RLR. The second
is based on �2,1-norm [20] loss function and we refer to it as
robust RLR (RRLR), because it can handle noise well. Two
optimization algorithms are devised to solve RLR and RRLR.
RLR and RRLR have closed-form solutions in each iteration
so that they are implemented easily. Extensive experiments
demonstrate the superiority of RLR and RRLR. In summary,
the contributions of this paper include the following.

1) It overcomes the problem of overfitting by using the
class compactness graph as the regularization item.
By solving the regularized minimization problem, it can
obtain the near-optimal margins.

2) Two algorithms are devised for the proposed methods
and both have closed-form solutions in each iteration,
which makes them implement easily. The validity of
these two algorithms are tested on low-dimensional,
high-dimensional data sets, and the corrupted image sets
and are illustrated by high classification accuracy and
fast running time.

3) Theoretical and experimental analyses of convergence
behaviors and computation complexities of these two
algorithms are given.

The rest of this paper is organized as follows.
In Section II, RLR and RRLR and their solutions are
presented. In Section III, we give the algorithmic analyses.
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TABLE I

INTRODUCTION OF MANY VARIABLES IN WHICH n IS THE NUMBER OF
TRAINING SAMPLES, m IS THE DIMENSIONALITY OF TRAINING

SAMPLES, AND c IS THE NUMBER OF CLASSES

Experiments and corresponding analyses are reported in
Section IV. Section V gives the kernel extensions of RLR
and RRLR. This paper is concluded in Section VI.

II. PROPOSED METHOD

A. Notation

The definitions of the training samples matrix X , label
matrix Y , and transformation matrix A are the same as those
in (1). ‖A‖2F = tr(AT A) = tr(AAT ) stands for the squares
Frobenius norm of matrix A, where tr(·) is the trace operator
of a matrix. ‖A‖2,1 = ∑m

i=1 (
∑c

j=1 a2
i j )

1/2 = ∑m
k=1 ‖ak‖2

is �2,1-norm of A, where ak denotes the kth row of A. The
�2,1-norm is first presented in [21] as a rotational invariant
�1-norm [22]–[25]. Table I gives the introduction of many
variables in this paper.

B. RLR

Our method inherits some ideas from DLSR [4]. First, four
samples are taken as an example to show how to relax the
strict binary label matrix into a slack variable matrix. Let

Y =

⎡

⎢
⎢
⎣

0 1 0
1 0 0
0 0 1
0 1 0

⎤

⎥
⎥
⎦ ∈ �4×3

be the corresponding label matrix of the four samples. It is
obvious that these four samples belong to the second, first,
third, and second class, respectively. It is expected that the
strict binary constraints in Y can be relaxed into the soft
constraints so that it has more freedom to fit the labels. To
this end, a slack variable matrix is used to substitute for the
original label matrix Y . The slack variable matrix is defined
as follows:

Y ′ =

⎡

⎢
⎢
⎣

−m11 1+ m12 −m13
1+ m21 −m22 −m23
−m31 −m32 1+ m33
−m41 1+ m42 −m43

⎤

⎥
⎥
⎦, s.t. mij ≥ 0.

It can be seen that this setting mij ≥ 0 can help to enlarge
the margins between different classes so that a discriminative
transformation matrix can be obtained. Therefore, a more
discriminant version of LR can be formulated as follows:

min
A
‖X A − Y ′‖2F + λ‖A‖2F . (2)

A luxury matrix is devised and then combined with the
original label matrix Y to develop the slack variable matrix Y ′.
Let B be the luxury matrix and defined as

Bij =
{
+1 if Yi j = 1

−1 if Yi j = 0

then Y ′ = Y + B 	 M , where 	 is a Hadamard product
operator of matrices. The nonnegative label relaxation matrix
M is defined as

M=
⎡

⎢
⎣

m11 · · · m1c
... mi, j

...
mn1 · · · mnc

⎤

⎥
⎦(i = 1, . . . , n; j = 1, . . . , c;mij ≥ 0).

Thus, (2) can be rewritten as follows:
min
A,M
‖X A − (Y + B 	 M)‖2F + λ‖A‖2F

s.t. M ≥ 0 (3)

where λ ≥ 0 is a positive regularization parameter.
Although the transformation matrix A in (3) is discrimi-

native, the problem of overfitting may occur due to this label
relaxation. Based on the idea from manifold learning, the class
compactness graph is proposed to address this problem. The
core idea is that the samples sharing the same labels should
be kept close together in the transformed space. In the class
compactness graph, two nodes corresponding to two different
samples from the same class are linked by an undirected
edge. Therefore, the weight of the class compactness graph
is defined as follows:

Wij =
⎧
⎨

⎩
e−
‖xi−x j ‖2

σ if xi and x j have the same labels

0 otherwise
(4)

where σ is the heat kernel parameter. A natural assumption
here could be that if W can capture the relationship that the
samples sharing the same labels should be kept close together,
then any two transformed samples fi and f j with the same
labels have a bigger weight Wij . A reasonable criterion for
choosing a “good” mapping is to minimize the following
objective function:

min
f

∑

i j

‖ fi − f j‖2Wi, j (5)

where fi = xi A denotes the transformation result of sample
xi . Minimizing it is to further ensure that fi and f j are close
in the transformed space. Based on the above insights, we
propose the following objective function:

min
A

∑

i j

‖ fi − f j‖2Wi, j = min
A

tr(AT X T L X A) (6)

where L is the graph Laplacian. L is defined as
L = Z − W , where Z is a diagonal matrix and its diagonal
entries are defined as Zi j =∑

j Wi j .
By integrating (6) with (3), we propose the following

objective function for RLR:
min
A,M
‖X A − (Y + B 	 M)‖2F + λtr(AT X T L X A)

s.t. M ≥ 0. (7)
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Note that in (7), since all training samples are used to
learn the transformation matrix A, the regularization item
‖A‖2F is not added as in (3). This leads to the merit that the
burden of parameter tuning is reduced. Let us revisit Fig. 1(b)
which explicitly shows that the better classifier 2© is obtained
by rotating the overfitting classifier 1© with an angle θ . In
other words, the regularization item tr(AT X T L X A) imposes
a perturbation on the transformation matrix A in order to rotate
the overfitting classifier 1© with the angle θ so that the problem
of overfitting in Fig. 1(a) can be addressed to some extent.

Once the optimal solution A is obtained, a test sample xte
is classified by using the following way. Let yte = xte A be the
transformation result of this test sample. If h = arg max

i
yi

te

(i = 1, . . . , c), then test sample xte is assigned to the hth
class, where yi

te denotes the i th element of vector yte.
According to [4], a direct optimization is impossible to solve

problem (7). Therefore, an iterative update rule is devised to
solve it and guarantee that it has a closed-form solution in
each iteration. The first step of the algorithm is to solve A by
fixing M . The following theorem is used for solving A.

Theorem 1: Given M , and let Y + B 	 M = D ∈ �n×c,
then the optimal A in (6) can be calculated as

A = (X T X + λX T L X)−1 X T D. (8)

Proof: Given an arbitrary M , (6) can be rewritten as

J (A) = arg min
A
‖X A − D‖2F + λtr(AT X T L X A) (9)

where D = Y + B 	 M . The optimal A can be obtained by
making the derivation of (8) with respect to A and set it to
zero. That is

∂ J

∂A
= 2X T X A − 2X T D + 2λX T L X A = 0

⇒ A = (X T X + λX T L X)−1 X T D. (10)

Thus, the proof is finished. �
Let P = (X T X + λX T L X)−1 X T , we find that P is

independent of D, and thus, it can be precalculated before
going to the loop. Parameter λ plays an important role in
RLR, which is generally selected from a large set of candidates
via cross validation. However, for image classification, the
number of features is usually much larger than that of the
samples (n � m). Thus, the size of X T X and X T L X is large
and the cross validation is computationally expensive. To this
end, first we decompose X = U�V T by the singular value
decomposition, where U ∈ �n×n , � ∈ �n×m and V ∈ �m×m .
Denote t = rank(X). Let Ut ∈ �n×t and Vt ∈ �m×t consist
of the first t columns of U and V , respectively. Let the
square matrix �t ∈ �t×t consist of the first t rows and the
first t columns of �, then X = U�V T = Ut�t V T

t . Then,
this decomposition is substituted into P , and thus, P can be
expressed as

P = (X T (I + λL)X)−1 X T

= V

( (
�t U T

t (I + λL)Ut�t
)−1 0

0 0

)

V T Vt�t U
T
t

= Vt (�t U
T
t (I + λL)Ut�t )

−1V T
t Vt�tU

T
t

= Vt (�t U
T
t (I + λL)Ut�t )

−1�tU
T
t (11)

Algorithm 1 RLR
Input: Training samples matrix X ; Label matrix Y ;
The luxury matrix B; Laplacian matrix L;
Parameter λ;
Output: The transformation matrix A.
Initialization: M = 1n×c;
Set t = 0;
repeat

1. Update At+1 = (X T X + λX T L X)−1 X T Dt ,
where Dt = Y + B 	 Mt .

2. Update Mt+1 = max(B 	 Rt+1, 0),
where Rt+1 = X At+1 − Y .

3. Update t = t + 1.
until Convergence

where the size of (�t U T
t (I + λL)Ut�t ) ∈ �t×t is much

smaller than that of (X T (I + λL)X) ∈ �m×m in the original
formulation. In this way, we finally need to calculate an inverse
(t × t) matrix in advance, and thus, this dramatically reduces
the computation cost when the number of features is much
larger than that of training samples.

The second step of the algorithm is to solve M by fixing A.
Let X A− Y = R. Since AT X T L X A is uncorrelated with M ,
(7) can be rewritten as

min
M
‖R − B 	 M‖2F

s.t. M ≥ 0. (12)

According to [4], the optimal solution of M is finally
obtained by

M = max(B 	 R, 0). (13)

The algorithm of RLR is described in Algorithm 1.
For (7), it is found that LR is equivalent to a special case

of RLR, and thus, we have Proposition 1.
Proposition 1: LR is equivalent to the special case of RLR

when λ = 0 and M = 0.
For (7), when λ = 0 and M = 0, it degrades into

min
A∗
‖X A∗ − Y‖2F . It is easy to find that RLR and LR are

exactly the same in essence besides there is no regularization
item in RLR in this case. Moreover, their solutions are
represented as the following unified form: A = (X T X +
γ I )−1 X T Y , where γ ≥ 0 is used to avoid singular of the
matrix X T X .

C. RRLR

�2,1-norm is usually used to perform feature selection due
to the row-sparsity property [26]–[30]. Let δ = ||AT xi − (yi+
Bi 	Mi )||2, then δ is not squared, and thus, outliers have less
important than the squared residual ||AT xi−(yi+Bi	Mi )||2.
This loss function has a rotational invariant, while the �1-norm
loss function does not has such property [26]. Thus, we use
the �2,1-norm-based loss function to replace the �2-norm-based
loss function in (7) and refer to it as RRLR. The objective
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function of RRLR is defined as follows:
min
A,M
‖X A − (Y + B 	 M)‖2,1 + λtr(AT X T L X A)

s.t. M ≥ 0. (14)

Some algorithms have been proposed to solve the
�2,1-norm minimization problem, such as the iterative update
rule shown in [4], [20], [21], [26], and [27]. However, in
these algorithms, the problems have no closed-form solutions.
Here, we propose an efficient algorithm to tackle (14) via the
alternating direction method of multipliers (ADMM) [31], [32]
and guarantee that (14) has a closed-form solution in each
iteration. According to ADMM, we introduce a slack variable
E to replace X A−(Y+B	M) so that objective function (14)
is separable.

Equation (14) can be rewritten as

min
A,E,M,C

‖E‖2,1 + λtr(AT X T L X A)

s.t. E = X A − (Y + B 	 M),M ≥ 0. (15)

ADMM solves the following problem:
min

A,E,M,C
‖E‖2,1 + tr(CT (E − X A + Y + B 	 M))+ μ

2

× ‖E − X A + Y + B 	 M‖2F + λtr(AT X T L X A)

s.t. E = X A − (Y + B 	 M),M ≥ 0 (16)

where C is Lagrange multipliers and μ ≥ 0 is the
penalty parameter. We iteratively update A, M , E , C ,
and μ.

The objective of (16) can be further transformed into the
following minimization problem:

min
A,E,M,C

‖E‖2,1 + μ
2
‖E − X A + Y + B 	 M + C

μ
‖2F

+ λtr(AT X T L X A)

s.t. E = X A − (Y + B 	 M),M ≥ 0. (17)

1) Updating A and M: To obtain the solutions of A and M ,
the problem is translated into the problem: Solving A and M
by an alternative update rule while fixing E . For this problem
of solving A and M while fixing E , the following theorem is
presented.

Theorem 2: Given E , the solutions of A and M can be
calculated by Algorithm 1.

Proof: Given E , we have the following optimization
problem:

min
A,M

μ

2
‖E − X A + Y + B 	 M + C

μ
‖2F + λtr(AT X T L X A)

s.t. M ≥ 0. (18)

Equation (18) is rewritten as

min
A,M

μ

2
‖X A −

(

Y + E + B 	 M + C

μ

)

‖2F
+ λtr(AT X T L X A)

s.t. M ≥ 0. (19)

When M is fixed and let U = Y + E + B 	 M + (C/μ),
(19) can be reformulated as

min
A

μ

2
‖X A − U‖2F + λtr(AT X T L X A) (20)

which is the form of (8) and can be solved by Theorem 1.
Next, M is solved while fixing A. Let K = X A− E − Y −

(C/μ), we have the following optimization problem:
min

M
‖K − B 	 M‖2F s.t. M ≥ 0 (21)

which is the form of (12) and can be solved by (13), M =
max(B 	 K , 0).

Therefore, we have proven our claim. �
2) Updating E: In order to obtain the solution of E while

fixing A and M , (17) can be converted into the following
problem:

min
E
‖E‖2,1 + μ

2
‖E − H‖2F (22)

where H = X A− Y − B 	M − (C/μ). Let ei and hi be the
i th rows of matrix E and H , respectively. Equation (22) can
be decomposed into n independent problems

min
ei

n∑

i=1

‖ei‖22 +
μ

2
‖ei − hi‖22 (23)

which can be solved by the proximal operator in [31] and [33]
and the solution is

ei =

⎧
⎪⎪⎨

⎪⎪⎩

(

1− 1

μ‖hi‖2
)

hi ‖hi‖2 > 1

μ

0 ‖hi‖2 ≤ 1

μ
.

(24)

3) Updating Parameters C and μ: In each iteration, C and
μ are updated as

{
C ← C + μ(E − X A + Y + B 	 M)

μ← ρμ
(25)

where ρ ≥ 0 is the incremental step size parameter.
We iteratively update A, M , E , C , and μ by solving the

above problems. The algorithm of RRLR is presented in
Algorithm 2.

III. ALGORITHM ANALYSIS

In this section, we first discuss the computation complexity
and convergence of Algorithms 1 and 2. Then, we present the
differences between our method and some similar methods.

A. Computation Complexity

In order to analyze the computation complexity, we assume
that m ≥ n (i.e., the dimensionality of the feature is larger
than the number of training samples).

1) RLR: The analysis of the computation complexity is as
follows.

The graph weight matrix W is computed with the cost of
O(n2m); the complexity to compute (X T X + λX T L X)−1 X T

is about O(m3 + m2n); the complexity of computing B 	 R
is O(nc), where c is the number of classes; the complexity to
obtain X A is O(nmc). The main computation complexity of
RLR is O((m3 + m2n + n2m) + (t (nc + nmc))), where t is
the iteration number.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 2 Solving (14) by ADMM
Input: Training samples matrix X ; Label matrix Y ;
The luxury matrix B; Laplacian matrix L;
Parameter λ;
Initialization: M = 1n×c; E = 0n×c; C = 0n×c;
μ = 0.1; ρ = 1.01;
while not converged do

1. Alternatively update A and M
while not converged do

a. Update A by solving (20).
b. Update M by solving (21).

end while
2. Update E by solving (22).
3. Update C and μ according to (25).

end while
Output:Transformation matrix A

2) RRLR: The analysis of the computation complexity is as
follows.

The complexity of computing E is O(nc); the complexity to
obtain C is O(nmc+ nc). The other analyses of computation
complexity are the same as that in RLR. The main computation
complexity of RRLR is O((m3+m2n+n2m)+(t1t2+t1)(nmc+
nc)), where t1 is the number of outside loop and t2 is the
number of inner loop.

Although many loops are required for RLR and RRLR
for optimization, it is still computationally more efficient
than some conventional representation-based methods, since
the iteration numbers are usually small. In the test phase,
the computation complexities of our methods are negligible,
since they only perform a linear computation. In addition,
some computations such as (X T X + λX T L X)−1 X T can be
precalculated before going to the loop, and thus, the overall
computation cost is acceptable. Next, we briefly analyze the
computation complexities of many representation-based meth-
ods, i.e., sparse representation classification (SRC), NNLS,
and metasample-based SRC (MSRC). Please note that these
methods have no training time. For SRC, the computation
complexity is about O(t (Rm2 + Rnm)), where t is the
number of iterations and R is the number of test samples.
For NNLS, the computation complexity is about O(t (mn R)),
where t and R are also the number of iterations and test
samples, respectively. For MSRC, the computation complexity
is at least higher than that of SRC, since it uses SRC to
perform the final classification. We also note that the number
of iterations of these representation-based methods is much
greater than that of our methods, and thus, their computation
cost are somewhat high.

B. Convergence

In order to analyze the convergence behavior of RLR
and RRLR, we first give Theorem 3 and then discuss the
convergence of RLR and RRLR.

Theorem 3: For any positive λ, (7) is a convex problem and
has at least one minimum. In the case of covariance matrix
X T X being nonsingular, problem (7) has a unique minimum.

Proof: Since both X T X and X T L X are positive semidefi-
nite, (7) is a convex function with respect to variable A. On
the other hand, there is no zero entry in the matrix B , and
as a result, (7) is a strictly convex function with respect to
variable M . Thus, problem (7) is a convex problem. According
to [34, Proposition 2.1.2], the minimum of (7) is nonempty.
Moreover, when X T X is nonsingular, (7) is strictly convex
function with respect to both A and M , and hence, problem (7)
has a unique minimum [34, Proposition 2.1.2]). �

Theorem 4: Suppose {Ak,Mk} is a sequence generated
by Algorithm 1 and X T X is nonsingular, then {Ak,Mk}
converges to the unique optimal solution to problem (7).

Proof: Algorithm 1 is a fundamental block ordinate descend
method, and both A and M can be uniquely obtained
in the case of that X T X is nonsingular. According to
[35, Proposition 2.7.1], the sequence {Ak,Mk} converges to
the unique solution of problem (6). �

The convergence of ADMM was proved for two blocks [36].
Next, we will prove that there are two blocks in Algorithm 2,
and thus, Algorithm 2 converges to an optimal solution.

Theorem 5: Let μ be any positive number and ρ ≥ 1.
Suppose {Ak,Mk , Ek} is a sequence generated by
Algorithm 2, then {Ak,Mk , Ek} converges to an optimal
solution to problem (15).

Algorithm 2 is a standard ADMM for problem (15), and
the convergence of which can be directly deduced from the
established results in [36]. Hence, we omit the proof here.
One may doubt that Algorithm 2 is an extended ADMM for
three blocks, because there are three primal variables A, M ,
and E , and hence, its convergence cannot be fully guaranteed.
However, we point out that: although three primal variables
are involved in Algorithm 2, variables A and M are jointly
updated via an inner loop. As a result, variables A and M can
be viewed as one variable in one block, and thus, Algorithm 2
is strictly a classical ADMM for two blocks. The experiments
demonstrated in Section IV show that RRLR has a good
convergence behavior.

C. Difference Between Our Method and
Some Similar Methods

Many previous regression methods [1], [2], [4], [11] only
aimed at enlarging the margins between different classes.
However, the optimal margins may be not obtained, since
they do not consider the problem of overfitting. However, our
method can obtain the optimal margins by solving (6) and (14).
The main reason is that besides seeking large margins, our
method addresses the overfitting problem by introducing the
class compactness graph, which can guarantee that the sam-
ples, even the samples corrupted by the noise, with the
same labels can be kept close together in the transformed
space. Therefore, the optimal margins are easily achieved
by solving the regularized minimization problem. In previous
works [5], [7], the graph embedding idea was also introduced
into the LSR framework to capture the desired prosperities
for the semisupervised learning. In [5] and [7], the sample
and its neighbors (may from different classes) were linked
by a undirected edge in order to ensure that these neighbor
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samples have similar labels, whereas the samples with the
same labels are linked by a undirected edge in our method.
Thus, the motivations and the purposes of introducing the
graph embedding in our method and in [5] and [7] are
distinctly different.

IV. EXPERIMENTS AND ANALYSIS

To evaluate RLR and RRLR, they are compared with LR,
sparse representation-based classification (SRC (l1_ls)) [37],
support vector machine (SVM) [38], DLSR [4], locality-
constrained linear coding for image classification (LLC) [39],
NNLS [3], LR-based classification (LRC) [40], K-nearest
neighbors (KNN), MSRC [41], extreme learning machine
(ELM) [42]–[44], random forest (RF) [42], logistic regression
(Log_R, one-against-all) and naive Bayesian decision tree on
ORL [45], Georgia Tech (GT) [46], [47], CMU PIE [48], and
AR [49] face data sets, Caltech 101 image data set [50], and
7 UCI data sets [51]. The platform is MATLAB 2011b under
Windows 7 on a PC equipped with a 2.67-GHz CPU and
4-GB memory. The MATLAB code of the proposed method
is publicly available at http://www.yongxu.org/lunwen.html.

A. Data Sets and Experimental Setup

1) ORL: This data set contains 400 face images taken
from 40 persons, with each person providing ten face images.
For some persons, the images were taken at different times,
with varying lighting, facial expressions (open/closed eyes,
smiling/not smiling), and facial details (glasses/no glasses).
The first 3, 4, 5, and 6 images per person are selected for
training and the remaining for testing.

2) GT: This data set consists of 50 persons with 15 images
per person. The images were taken with several variations such
as pose, expression, cluttered background, and illumination.
The first 4, 5, 6, 7, and 8 images per person are selected for
training and the remaining for testing.

3) CMU PIE: This data set contains 68 person with 41 368
face images as a whole. The face images were captured under
varying pose, illumination, and expression. In the experiments,
this subset that contains five near frontal poses (C05, C07,
C09, C27, and C29) and all the images under illuminations and
expressions are selected. Therefore, there are about 170 images
for each person. The first 30, 40, 50, 60, 70, and 80 images
per person are selected for training and the remaining for
testing.

4) AR: This data set contains over 4000 color face images
of 126 peoples, including frontal views of faces with different
facial expressions, lighting conditions, and occlusion. In the
experiments, 3120 gray images from 120 subjects are used
with each subject providing 26 images. The first 5, 6, 7,
and 8 images per person are selected for training and the
remaining for testing.

5) Caltech 101: This data set contains 9144 images from
102 classes (i.e., 101 object classes and a “background” class),
including animals, vehicles, and flowers. The samples from
each category have significant shape variability. The number
of images in each category varies from 31 to 800. The first 10,
15, 20, 25, and 30 images per class are selected for training
and the remaining for testing.

TABLE II

SUMMARY OF CHARACTERISTICS OF THESE SEVEN UCI DATA SETS

TABLE III

CLASSIFICATION ACCURACIES (%) OF DIFFERENT

ALGORITHMS ON THE ORL DATA SET

6) UCI Data Sets: A summary of characteristics of these
seven UCI data sets is presented in Table I. For each data set,
the first 5, 15, 25, and 35 samples per class are selected for
training and the remaining for testing.

For LLC, we use all the training samples as the code-
book. For SVM, the regularization parameter C is selected
from the set {0.001, 0.01, 0.1, 1.0, 10, 100, 1000} by using
the cross validation method, which is also used to select
the optimal parameters for LR, DLSR, LLC, and NNLS,
respectively. For RLR and RRLR, the heart parameter σ
is set to 1 and the regularization parameter λ is selected
from the range from 10−4 to 100. The best results of all
methods are selected as the final results. In all experi-
ments, all face images are manually cropped and resized to
32 × 32 pixels. For Caltech 101 image data set [52], we
select the spatial pyramid features of image, which is available
at “http://www.umiacs.umd.edu/∼zhuolin/projectlcksvd.html”,
for the experiment.

B. Experimental Results and Its Analysis

Tables III–V show the classification accuracies on the ORL,
GT, and CMU PIE data sets, respectively. Figs. 2 and 3 show
the classification accuracies on the Caltech 101 and AR data
sets, respectively.

As can be seen from Tables III–V, RLR and RRLR perform
well when compared with all the other algorithms on high-
dimensional data sets (face data sets and image data sets).
Particularly, when using the �2,1-norm based loss function,
RRLR is robust to the facial expression variations. For exam-
ple, in Table III, the performance of RLR is slightly inferior
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TABLE IV

CLASSIFICATION ACCURACIES (%) OF DIFFERENT
ALGORITHMS ON THE GT DATA SET

TABLE V

CLASSIFICATION ACCURACIES (%) OF DIFFERENT

ALGORITHMS ON THE CMU PIE DATA SET

Fig. 2. Classification accuracies (%) of different algorithms on the Caltech
101 data set.

to that of DLSR when the first three and five are selected for
training. However, RRLR still demonstrates its power in the
two cases.

For the Caltech 101 and AR data sets, there are more
complex variations in the images than the other data sets. Some
classic classification algorithms may fail to classify the test
samples correctly. For example, SVM, LRC, KNN, LR, and
DLSR all obtain worse classification results. However, RLR
and RRLR still achieve good performance on these two data
sets. This is particularly evident on the AR data set.

Table VI lists the classification accuracies of different
methods on seven UCI data sets. From Table VI, it can be
see that RLR and RRLR do not achieve the consistently best

Fig. 3. Classification accuracies (%) of different algorithms on the AR
data set.

TABLE VI

CLASSIFICATION ACCURACIES (%) OF DIFFERENT

ALGORITHMS ON THE SEVEN UCI DATA SETS

classification results on these data sets except on the Wine and
Krvskp data sets. For example, on the Breast data set, RLR and
RRLR obtain the best classification accuracies on two cases
(25 and 35), but they are only the third and second best on the
other two cases (5 and 15), respectively. The similar results
can also be found on the other data sets.

In order to test the robustness of RLR and RRLR, experi-
ments are also conducted on the corrupted Extended Yale B
data set. The introduction of this database is shown in [52].
We randomly select 15 persons from the Extended Yale B
data set to test the robustness of our method to different types
of corruptions. We, respectively, simulate various levels of
contiguous occlusions and random pixel corruption which are
as follows.

1) Contiguous Occlusions: The block occlusions are ran-
domly added to different locations in each image with
the block size of 10× 10 and 20× 20, respectively.
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Fig. 4. Some of the corrupted face images from the Extended Yale B data
set: AR.

Fig. 5. Experimental results of different methods on the Extended Yale B
data set.

2) Random Pixel Corruptions: We randomly choose pixels
from each image and corrupt them by salt & pepper
noise. The rates of corrupted pixels are 10% and 20%,
respectively.

Fig. 4 shows some of the corrupted face images from the
Extended Yale B data set. We randomly select 30 samples per
subject as the training set and use the remaining as the testing
set. Fig. 5 shows the experimental results of different methods.
It can again be seen that RLR and RRLR outperform all the
other methods, including SRC, an outstanding method for the
corrupted images classification [53].

Based on the experimental results on these image
and UCI data sets, the following conclusions are
reached.

1) RLR and RRLR are significantly superior to some
representation-based algorithms, such as SRC, MSRC,
LCC, and LRC. The reason may be that these
representation-based algorithms mainly focus on the
ability of sample reconstruction. However, the best sam-
ple reconstruction does not mean the best separability
[54]. By relaxing the strict binary label matrix into a
slack variable matrix and using class compactness graph
to avoid the problem of overfitting, RLR and RRLR can
obtain the near-optimal margins. Thus, the classification
results of RLR and RRLR are best.

2) When the number of training samples is very
small, some classification methods (LR, SVM, DLSR,
and NNLS) cannot find the true decision function.
The potential reason may be that these methods are more

likely to overfit with a few training samples. However,
RLR and RRLR still obtain the best classification results.
The main reason is that the class compactness graph
plays a vital role in avoiding the problem of overfitting.
For example, although DLSR obtains the large margins,
DLSR does not consider the problem of overfitting. As
a result, its classification performance is inferior to RLR
and RRLR in most cases, especially on the GT and CMU
PIE data sets. This indicates that the class compactness
graph can indeed be used to address the problem of
overfitting.

3) RLR and RRLR cannot obtain the best classification
results on some low-dimensional data sets (see Table
VI). The possible reason is that when the training
samples are transformed into the label space, the dimen-
sionality is so low that it may not support to preserve
the manifold structure of the data. In other words, the
samples sharing the same class may not keep close
together under such low dimensionality, and thus, the
problem of overfitting may be occurred in this case. As
a result, the optimal margin may be not obtained on
some low-dimensional data sets.

4) RRLR outperforms RLR on these corrupted face image
data sets due to the use of the �2,1-norm-based loss
function. Particularly, when RRLR classify the faces
with glasses or scarf occlusion in the AR data set, it still
has advantages on classifying them correctly. However,
SRC, DLSR, SVM, and LR cannot achieve satisfying
classification results. We also note that LRC achieves the
worst classification results in this case. We analyze the
reason as follows: when the test samples are corrupted,
the clean training samples may well represent some test
samples that from different classes. As a result, a test
sample is classified into a false class. It should be noted
that on the ORL data set, RLR is slightly inferior to
DLSR in two cases. However, in GT and AR data sets,
two more complex data sets, RLR is superior to DLSR
in the classification performance, which benefits from
the use of the class compactness graph.

5) As shown in Table VI, RLR and RRLR fail to earn the
consistent winner on some low-dimensional data sets.
In other words, RLR and RRLR may not be capable of
classifying some low-dimensional data. DLSR, SVM,
RLR, and RRLR have their merits in classifying low-
dimensional data. Therefore, we may select the most
suitable method for a specific application. However,
RLR and RRLR obtain the best classification results on
high-dimensional data, and thus, they are particularly
favorable for classifying high-dimensional data. More-
over, the computing of the transformation matrix A can
be done offline. Thus, RLR and RRLR can be competent
for practical high-dimensional data classification.

In order to better evaluate the performance of RLR, confu-
sion matrix and receiver operating characteristic (ROC) curve
is studied on the test samples of the Semeion data set. Some
elements in Y ′ may be large which may lead to the problem
that some large elements submerge some small elements
when they are compared. Thus, each row elements in Y ′ are
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Fig. 6. Confusion matrix and ROC curves on the Semeion data set, in which
the first 5 samples per class were selected for training and remaining for
testing. (a) Confusion matrix on the Semeion data set. (b) ROC curves on the
Semeion data set.

Fig. 7. Classification accuracies (%) versus the value of λ on these four data
sets. (a) ORL (# 6). (b) GT (# 8). (c) Caltech 101 (# 25). (d) AR (# 8).

normalized to [0, 1] for the sake of the analysis of ROC
curve. The confusion matrix and the ROC curve are shown
in Fig. 6. From Fig. 6, it can be seen that the performance
of classifier associated with the class 1 is the best and the
classifier associated with the class 9 is the worst. However,
when the value of false positive rate is greater than 0.8, all
classifiers achieve almost equivalent performance. Moreover,
the value of area under ROC curve of the classifier associated
with the class 9 (i.e., the worst classifier) is still greater than
0.80, which indicates that the proposed RLR achieves excellent
classification performance on the Semeion data set.

C. Parameter Sensitiveness and Convergence Study

In order to further investigate the properties of RLR and
RRLR, the classification accuracies versus the value of λ are
shown in Fig. 7, in which (#) represents that for each data set
the first (#) training samples per class are selected for training
and the remaining for testing. This setting is also suitable for
subsection E.

It can be see that RLR and RRLR are not robust to λ. This
is because, if λ is very small, the class compactness graph may
not effectively address the problem of overfitting; if λ is very

Fig. 8. Convergence curves of RLR and RRLR on these two data sets.
(a) Caltech 101 (# 25). (b) AR (# 8). (c) Caltech 101 (# 25). (d) AR (# 8).

large, it cannot achieve the optimal margins between different
classes. Moreover, it is observed that when the images in the
data set have strong variations, the corresponding value of λ
is large, such as on the Caltech 101 and AR data sets. This
also indicates that the problem of overfitting easily happens
on these data sets with strong variations. The compactness
graph in RLR and RRLR plays a vital role in suppressing the
problem of overfitting on these data sets. How to select the
optimal the value of λ is data set dependent and still an open
problem. In practical, the cross validation method is used to
select the optimal value of λ from the given range.

From the convergence curves in Fig. 8, we can see that RLR
and RRLR converge very fast, especially within 20 iterations
for RRLR on these two data sets.

D. Comparison of Training and Test Time

In this section, we compare the running time of our methods
(RLR and RRLR) with those of SRC, DLSR, NNLS, MSRC,
LRC, LLC, ELM, and RF. ELM, RF, DLSR, and our methods
need complete training and test phases. For example, DLSR
and our methods need learn a projection in the training phase
and then use a linear classifier for classification in the test
phase. However, SRC, NNLS, MSRC, LRC, and LLC have
no training time and only have test time, since they only
need to represent input test samples as a linear combination of
dictionary items, and then use the representation coefficients
for classification. Therefore, we, respectively, give the training
time and test time of different methods.

Table VII shows the training and test time of different
methods on two representative data sets GT (the dimension-
ality of the feature is larger than the number of training
samples) and AR (the number of training samples is larger
than the dimensionality of the feature). We can see that the
running speed of our methods is significantly faster than
the representation-based methods in training phase, since
representation-based methods require a lot of time to solve
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TABLE VII

TRAINING TIME+ TEST TIME ON THE GT AND AR DATA SETS (THE FIRST EIGHT IMAGES PER PERSON WERE
SELECTED FOR TRAINING AND THE REMAINING FOR TESTING ON THESE TWO DATA SETS)

Fig. 9. Optimization time (s) on two largest data sets. (a) Caltech 101.
(b) CMU PIE.

an optimization problem. In contrast, our methods only need
to solve a group of linear equations in each iteration, which
has linear time complexity. Therefore, RLR and RRLR are
faster than these representation-based methods. In test phase,
the running speed of our methods is also faster than the other
methods, since our methods use a linear classifier to classify
test samples. Please note that the average test time is time
to classify a test sample. We also note that ELM spends less
training time than RRLR. However, classification accuracies
of ELM on the GT and AR data sets are significantly lower
than our methods (see Table IV and Fig. 3).

E. Average Optimization Time

In this section, we evaluate the average optimization time
of our methods with different settings.

In our methods, variable M needs to be set in advance.
With different settings of M , we have different optimization
time. To evaluate the average optimization time, for each data
set, we randomly set different values for M in advance and
then run our algorithms. This process is repeated 20 times,
and then, the average optimization time is reported. This

experiment helps evaluate how much time the convergence is
guaranteed and which case the convergence is guaranteed in a
reasonable amount of time. Please note that the convergence
criterion used in Algorithms 1 and 2 are that the number
of iterations are more than 200 and 50, respectively, or
|�k−1 − �k |/�k ≤ 0.001, where �k is the value of the
objective function in the kth iteration. In this experiment,
we select two largest data sets Caltech 101 and CMU PIE
to evaluate the average optimization time and the results
are shown in Fig. 9, in which RLR/RRLR_rand represents
that M is randomly set to different values (evaluate average
optimization time) and RLR/RRLR_fix represents that M is
the matrix with all elements as 1. It can be seen that in
the Caltech 101 data set (# 25), the average optimization
time of RLR_rand and RRLR_rand is less than 5 and 65 (s),
respectively. In CMU PIE data set (# 50), the average opti-
mization time of RLR_rand and RRLR_rand is less than
100 and 160 (s), respectively. Although different data sets have
different optimization time, we find that if we initialize M as a
matrix with all elements as 1, the optimization time is less than
that of setting M as a random value. Particularly, in CMU PIE
data set (# 50), the average optimization time of RRLR_rand
is 160 (s) but RRLR_fix is faster than RRLR_rand by a margin
of 23 (s). Therefore, in our experimental setting, we always
set M as a matrix with all elements as 1, which can guarantee
that algorithms converge to a reasonable amount of time.

V. KERNEL EXTENSIONS OF RLR AND RRLR
In some real-world applications, many data are not linear,

which may limit the application of RLR and RRLR. Therefore,
in this section, we derive the kernelized versions of RLR
and RRLR to tackle the nonlinear problems. We only give
the formulations of RLR and RRLR and their solutions and
experiments are not done due to space limitation.

Let φ: �n → � be a nonlinear function which maps data
from the input space �m to a high-dimensional feature space
�(X → φ(X)). In this case, the number of dimension can
be much high, or even infinite. Let K ∈ �n×n be a positive
semidefinite kernel Gram matrix whose elements are computed
using

[K(X, X T )]i j = [< φ(X), φ(X)T >�]i j = k
(
x T

i , x T
j

)
(26)

where k: �m × �m → � is the kernel function and φ(X) =
[φ(x1)

T , φ(x2)
T , . . . , φ(xn)

T ]. Some commonly used kernel
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functions include polynomial kernel k(x, y) = (< x, y >
+a)b, Gaussian kernel k(x, y) = exp(−σ ||x − y||2), and
hyperbolic tangle kernel k(x, y) = tanh(sx T y + o), where
a, b, σ s, and o are the corresponding kernel parameters,
respectively.

The transformation matrix A can be represented as a
linear combination of all the training samples in the high-
dimensional feature space A∗ = φ(X)T ϕ, where ψ =
[αT

1 , α
T
2 , . . . , α

T
n ] is the representation coefficient matrix. With

the above definitions, the nonlinear RLR can be written as
follows:

min
ψ,M
||φ(X)φ(X)Tψ − (Y + B 	 M)||2F

+ λtr(ψT φ(X)φ(X)T�φ(X)φ(X)Tψ). (27)

Equation (27) can be further transformed into the following
minimization problem:

min
ψ,M
||Kψ − (Y + B 	 M)||2F + λtr(ψT K�Kψ) (28)

where � = � − �. � is the weight matrix and defined
as �i j = e−((||φ(xi)

T−φ(x j )
T ||2)/σ ). � is the diagonal matrix

� =∑
j �i j .

With the same definitions, the nonlinear RRLR can be
written as

min
ψ,M
||Kψ − (Y + B 	 M)||2,1 + λtr(ψT K�Kψ). (29)

Once we obtain the representation coefficient matrix ψ ,
we can calculate the transformation result of test samples by
φ(X te)φ(X)Tψ , where φ(X te) is the test samples matrix.

VI. CONCLUSION

By relaxing the strict binary label matrix into a slack
variable matrix, the proposed methods have more freedom to
fit the labels and can enlarge the margins between different
classes as much as possible. The class compactness graph is
used to address the problem of overfitting. Two optimization
algorithms are derived, which all solve a sequence of convex
optimization problems, and hence, they are both tractable and
scalable. We also extend RLR and RRLR into their kernel ver-
sions. Experiments indicate that these two algorithms outper-
form the state-of-the-art algorithms in terms of classification
accuracy and running time. The limitation of two algorithms
is that they may not work well on some low-dimensional data
(as shown in Table VI). In the future, we plan to improve them
so that they can classify low-dimensional data well.
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